2022年地质灾害防治单位资质申报条件
地质灾害防治单位资质分为 甲、乙 两个等级。地质灾害防治单位资质的类别包括 地质灾害评估、勘查、设计资质、地质灾害治理工程施工资质、地质灾害治理工程监理资质。
添加微信好友, 获取更多信息
复制微信号
自然资源部负责地质灾害防治单位甲级资质的审批和监督管理。省级人民政府自然资源主管部门负责地质灾害防治单位乙级资质的审批和监督管理。
同一地质灾害治理工程的监理单位与施工单位不得有隶属关系或者其他利害关系。
【资质条件】 申请地质灾害防治单位资质应当符合下列条件:
(一)具有法人资格,其中申请地质灾害治理工程施工资质的单位应当具有企业法人资格;
(二)具有资源与环境类、土木水利类相关专业技术人员,其中单位技术负责人应当具有高级技术职称;专业
技术人员中退休人员数量不超过本办法规定的专业技术人员最低数量要求的10%;
(三)申请地质灾害评估勘查设计资质,应当具备全站仪、水准仪、探地雷达等设备;申请地质灾害治理工程
施工资质,应当具备全站仪、水准仪、锚杆锚索钻机、凿岩机等设备。
(四)具有健全的安全管理体系和质量管理体系。
【人员和业绩条件】 申请地质灾害防治单位资质,除本办法第七条规定的条件外,还应当具备以下人员
和业绩条件:
(一)甲级资质
1.人员条件: 申请地质灾害评估勘查设计资质、地质灾害治理工程施工资质的单位,专业技术人员总数不少于 50人,其中高级、中级技术职称人员总数不少于 25 人,高级技术职称人员不少于10 人;申请地质灾害治理工程监理资质的单位,专业技术人员总数不少于 30 人,其中高级、中级技术职称人员总数不少于 20 人,高级技术职称人员不少于 10 人。
2.业绩条件: 申请地质灾害评估勘查设计资质的单位,申请之日前 5 年内应当独立承担并完成地质灾害危险性评估、地质灾害治理工程勘查项目、地质灾害治理工程设计项目总数不少于5 项,完成项目总经费不少于60 万元;申请地质灾害治理工程施工资质的单位,申请之日前 5年内应当独立承担并完成地质灾害治理工程施工项目不少于 5 项,完成项目总经费不少于1000 万元;申请地质灾害治理工程监理资质的单位,申请之日前 5年内应当独立承担并完成地质灾害治理工程监理项目不少于 5 项,完成项目总经费不少于30 万元。
(二)乙级资质
人员条件: 申请地质灾害评估勘查设计资质、地质灾害治理工程监理资质的单位,专业技术人员总数不少于 10人,其中高级技术职称人员不少于3 人;申请地质灾害治理工程施工资质的单位,专业技术人员总数不少于20 人,其中高级技术职称人员不少于 5 人。
【申请材料】 申请地质灾害防治单位资质的单位,应当向审批机关提出申请,并提交以下材料:
(一)地质灾害防治单位资质申请书;
(二)营业执照或者事业单位法人证书;
(三)专业技术人员名单、身份证、职称证书、学历证书、申报前连续3个月由本单位缴纳社会保险记录文件,技术负责人的任命或者聘任文件;
(四)本单位设备的所有权材料或者租赁合同;
(五)职业健康安全管理体系认证证书或者安全管理制度文件;
(六)质量管理体系认证证书或者质量管理制度文件;
(七)申请地质灾害评估勘查设计甲级资质的单位,还应当提供申报业绩的项目合同、验收报告或者专家评审意见;申请地质灾害治理工程施工甲级资质、地质灾害治理工程监理甲级资质的单位,还应当提供申报业绩的项目合同、验收报告。申报业绩的信息应当与全国地质勘查行业监管服务平台公示的有关业绩信息相一致。
探地雷达的应用
探地雷达是一种高分辨率探测技术,可以对浅层地质问题进行详细填图,也可以对地下浅部埋藏的目的体进行无损检测。由于电子技术与数字处理技术的发展,使探地雷达的分辨率与探测深度大大提高,探地雷达已在工程地质勘察、灾害地质调查、地基基础施工质量检测、考古调查、管线探测、公路工程质量检测等多个领域中得到了广泛应用。下面介绍探地雷达在两个领域中的应用。
(一)探地雷达在工程地质勘察中的应用
大型工程建筑对地基质量要求很高,当地下工程地质条件横向变化较大时,常规的钻探工作由于只能获得点上的资料,无法满足基础工程施工对地质条件的要求,而探地雷达由于能对地下剖面进行连续扫描,因而在工程地质勘察中得到了广泛的应用。
1.基岩面的探地雷达探测
高层建筑对地基的附加应力影响深、范围广,对地基土的承载力要求高。当场地的地基土层软弱,而在其下不太深处又有较密实的基岩持力层时,常常采用进入基岩的桩基础,在基岩面起伏剧烈地区,详细描述基岩面的起伏对桩基础设计有重要意义。
图3-53 灰岩与覆盖地层的探地雷达图像
广州同德花园位于广州西北郊同德乡广佛高速公路旁。第四系覆盖在基岩(灰岩)上,第四系为淤泥、粉质黏土与砂,比较松软地灾资质探地雷达;其下为灰岩,有较高的承载力。建筑物拟采用预制桩桩基础。在楼址范围30.8 m× 30.8m内,基岩深度为18~43.5 m,高差达25.5m,为此需要详细调查基岩面的起伏。由于灰岩与上覆地层之间电性差异大,探地雷达图像中灰岩极易识别,图3-53为该场地地层的探地雷达图像,图中灰岩反射波特征明显。
图3-54是由探地雷达测量结果绘制的基岩等深图。该场地西北角为基岩深凹陷,基岩面起伏最大之处,在10m水平距离内基岩面高差可达19m。显然,用钻探很难控制基岩面的剧烈起伏,上述结果表明,应用探地雷达探测基岩起伏效果明显。
图3-54 同德花园10栋基岩等深图(单位地灾资质探地雷达:m)
2.岩溶地区的探地雷达探测
岩溶(又称喀斯特)是指碳酸盐岩等可溶性岩层受水的化学和物理作用所产生的沟槽裂隙和空洞,以及由于空洞顶板塌落使地表产生陷穴、洼地等现象和作用的总称。
在岩溶地区进行工程地质勘察的主要目的是查明建筑场地范围内岩溶的分布、形状和规模。下面对各类岩溶的探地雷达图像特征加以描述。
(1)节理裂隙岩溶
水对灰岩的侵蚀一般从节理裂隙开始,岩溶本身往往就是裂隙溶蚀、扩大的结果,因此节理裂隙交叉处或密集带往往就是岩溶发育带。图3-55为湖北黄石某地裂隙溶蚀带的探地雷达图像。从图中可以看出地下6m以上为覆盖层,其下为灰岩。灰岩致密无溶蚀特征时,基本上无雷达反射波存在;灰岩中存在溶蚀裂隙并充水时,由于电性差异大,形成强反射波。在探地雷达确定的裂隙岩溶处进行钻探,其结果表明该处没见明显空洞,但该处岩体裂隙发育,钻孔漏水严重。由此证实该雷达图像反映的是由地下水在裂隙发育带形成的裂隙岩溶。
图3-55 裂隙岩溶的探地雷达图像
图3-56 溶蚀沟的探地雷达图像
(2)溶蚀沟槽
灰岩长期出露地表时,其表面遭受风化后强度降低。灰岩表面地形变化剧烈的地方,会由于地表的大径流,使其表面受强烈侵蚀而形成溶沟、溶槽。图3-56为广州市某处溶蚀沟的探地雷达图像。由图可见,灰岩中反射波明显减弱,同相轴中断的区域为灰岩的溶蚀沟。由于沟壁陡直,在地表接收不到来自沟壁的反射波,而沟壁周界的灰岩会由于溶蚀作用形成强反射波,因此溶蚀沟圈定应以强反射波为周界。该处地下灰岩为石炭系灰岩,曾长期出露地表,在灰岩的斜坡面上会由于地表径流的侵蚀形成溶蚀沟。在地壳下降后,溶蚀沟逐渐为粉土充填。
(3)溶洞与开口溶洞
溶洞是可溶岩中的空洞,对建筑基础影响最大的是可溶岩面附近的溶洞。当岩面覆盖着易被冲蚀的渗透地层,且岩溶与上覆地层存在水力联系时,这种水力联系会加速岩溶发育。当岩溶顶部变薄,不能支持上覆地层负荷时,就会发生塌落,形成开口溶洞。在开口溶洞上方土体中存在被冲蚀,以致土体密度降低的现象,我们称为土体扰动。图3-57为广州市某处的开口溶洞的探地雷达图像。该处覆盖层为细颗粒粉砂,有一定的渗透性,其下为灰岩。灰岩面附近岩溶发育,可见不规则强反射波。在强反射波所围绕的区域内有一组短周期细密反射波。该反射波组特征与上覆地层反射波特征类似,这表明灰岩中空洞已被上覆地层冲蚀的土体所充填。由于开口溶洞上方土体已遭冲蚀,其反射波形态与周围土层的反射波形态不同,表明上覆地层已遭扰动。扰动土层与充填溶洞构成了开口溶洞特征。这类岩溶使上覆地层承载力明显降低,极易引起坍塌,在岩溶地区勘察时这类开口溶洞应引起注意。
图3-57 开口溶洞的探地雷达图像
(二)探地雷达在地基基础施工中的应用
1.探地雷达在桩基础施工障碍成因调查中的应用
近年来,大型建筑物采用桩基础施工的数量越来越多。由于勘探程度不够或地下介质不均匀程度加剧,造成桩基础施工遇阻。实践表明,探地雷达在判断桩基础施工遇阻的原因方面有独到作用。
(1)桩位处地层断裂性质判别
武汉火炬大厦桩基础施工过程中,在武珞路北拟建的33层高层建筑东北角51#挖孔桩遇到破碎地层。为评价桩位下地层破碎的成因及其对桩位的影响,围绕桩位进行了探地雷达测量。场区基坑已开挖,第四系填土已被挖除,地层系志留系泥岩。志留系原岩曾长期出露地表,经风化自上而下可分为全风化层、中风化层与微风化层。无破碎带存在时,反射波同相轴连续。当基岩因断裂而形成破碎带时,反射波同相轴明显错断。由于破碎带为地下水入侵提供了通道,造成风化程度加深,错动带内雷达反射波强度明显减弱。图3-58为基岩破碎带的探地雷达图像特征。为了了解桩位处断裂情况,围绕桩位布置了雷达测线。根据地质雷达图像,得到基岩破碎带的平面分布,如图3-59所示。由图可见,51#桩位于两条断裂之间,这两条断裂应为褶皱形成时的伴生断裂,断距小(<2m),断裂带宽度不大(1.6m左右),因此只要根据破碎带力学性质对桩的设计做些小改动,就可以继续进行挖孔桩施工。上述结论已为设计部门接受并为随后的挖孔桩施工所证实。
图3-58 基岩破碎带探地雷达图像
图3-59 雷达测线布置与破碎带分布平面图
(2)桩基础下异常性质判断
粤汉码头滩地改造一期工程住宅楼场址在进行沉管灌注桩施工过程中,有的桩位遇阻打不下去,有的桩位水泥超量使用。为查明桩基施工过程中问题的症结,围绕桩位用探地雷达进行了探测。在桩基础施工中主要出现的问题有两类:一是遇障碍物,桩很难打下去;二是桩非常容易打下去,但浇灌的混凝土大大超出桩的体积。探地雷达测量所发现的异常有三种类型:一是杂填土中硬物异常;二是杂填土中的不密实区;三是淤泥液化形成的空穴。本场地为紧靠长江的滩地,为防洪在地表下填充了大量杂填土。当杂填土中存在建筑垃圾等杂物时,便形成了与周围介质差异极大的强、宽反射波,这类异常没能在周围测线形成有规则的排列,故定为硬性杂物,如图3-60(a)所示。当杂填土堆积比较疏松,形成杂填土中的不密实区,这类填土可能是生活垃圾等细软物质,形成同相轴杂乱的反射波,如图3-60(b)所示。按场地地质勘测结果,粉砂层上有一层粉质黏土。当粉质黏土中淤泥质含量高且下伏的粉砂颗粒较粗时,淤泥质土受到桩基础施工扰动形成液状土,当其水分通过下伏透水性好的砂层渗漏时便会形成空穴。这种空穴形成有下列三个条件:一是下伏粉砂颗粒较粗,透水性好;二是粉土颗粒变细向淤泥质土靠近,含水率高;三是在这种土中进行桩基础施工造成扰动。当这三个条件都具备时,会在这类土中形成空穴,如图3-60(c)所示。
图3-60 三种地下异常的探地雷达图像
(a)杂填硬物的地质雷达图像;(b)不密实区的地质雷达图像;(c)淤泥液化成空穴的地质雷达图像
2.探地雷达在地下顶管问题调查中的应用
在老城区改造进行地下水管道及煤气管道铺设时,为不影响地面交通,常采用地下顶管工艺铺设管道。在地下地质情况复杂区,顶管常会遇到问题,极需查明情况采取对策。实践表明,探地雷达在查明地下顶管问题过程中效果明显。
(1)顶管引起地下塌陷原因剖析
上海曲阜路地下煤气管道的地下顶管施工过程中,文安路口东头路面发生陷落,为决定煤气管是继续采用地下顶管施工,还是采用大开挖施工,必须查明陷落范围与成因,为此应用探地雷达进行探查。图3-61为该段探地雷达图像。在地表32~54m范围,深度1.5~4m处可见到反射波特征明显不同于周围介质的区域。该处反射波强度明显加大,反射波同相轴明显不连续,呈现杂散充填物的反射波特征。该处紧挨吴淞江,地表有流入吴淞江的支流,因此在筑路时填充有杂填土。由图还可见到,在更大范围(地表2~54m)内有反射波强度变弱、周期变短的区域,具有均质淤泥反射波特征,故该处应为杂填土的沉积物范围。淤泥液化度高,在地下顶管过程中受到扰动,饱和孔隙水释放,淤泥塌陷,造成路基承载力下降,路面陷落。淤泥变形区的周界处可见到反射波同相轴的明显错断。
图3-61 上海曲阜路探地雷达图像
(2)地下顶管前方障碍物探查
根据市政建设需要,南京市下水管道需在水关桥公铁立交桥下通过。水关桥公铁立交桥采用沉箱工艺建筑,由于地下存在淤泥质软基地层,在沉箱下填有碎石加固基础。下水管过立交桥采用地下顶管工艺,为了顶管安全,要求应用探地雷达探测管线通过处有无地下障碍物存在。测量采用顶管前方超前预报的环形剖面与管线地表剖面探测相结合的方法。图3-62为1#管超前探测环形剖面雷达图像,可见有两道雷达波形在顶管前方10m以远,尤其在11.6~14.8m范围内有孤立的人为障碍物存在。图3-63为1#管线地表剖面的雷达图像,表明该处箱体下软基发育,淤泥底界深约4m。在箱体下软基发育段,淤泥底界面上有一不连续窄反射波。这与顶管前方探测的异常是一致的,该异常应为箱体基础施工过程中加固物没入淤泥底所形成的。工作结果表明,在管线通过处前方无人为的大直径障碍物存在,而孤立的小块障碍物由于处在淤泥中,极易被顶管推动而移开,不会造成施工障碍,上述结论已为施工所证明。
图3-62 1#管超前预报环形剖面雷达图像
1#顶管面前方10~14.5m有孤立的接近0.3m的块石
图3-63 1#管线地表剖面雷达图像
本项目重点
本项目重点介绍了电磁感应法理论基础,并将频率测深,尤其可控源音频大地电磁测深法,以及瞬变电磁法作为重点方法给予介绍。
思考题
1.方法名词理解:
电磁法;电磁测深法;电磁剖面法;瞬变电磁法;可控源音频大地电磁法;探地雷达法。
2.阐述电磁法的基本原理。
3.阐述电磁测深法的基本原理和应用范围。
4.阐述电磁剖面法的基本原理和应用范围。
5.阐述瞬变电磁法的基本原理和应用范围。
6.阐述可控源音频大地电磁法的基本原理。
7.阐述探地雷达的基本原理和应用范围。
8.试对比时间域和频率域电磁法的优缺点。
9.试述对称四极装置直流电测深、大地电磁测深、频率测深和瞬变测深曲线的共同点和不同点。
10.试论用电磁法评价异常源性质的可能性和局限性。
11.在电阻率为100Ω·m的均匀介质中传播1000 Hz的平面电磁波,试计算电磁系数m及趋肤深度δ(已知εr=36)。
12.比较f=1000 Hz的电磁波在空气中和电阻率为10Ω·m的导电介质中的波长。
13.在我国的某一工区开展大地电磁测深工作,所使用仪器的频率范围为320~0.001Hz,已知地下的平均电阻率为100Ω·m,求大地电测深在该区工作的最大穿透深度是多少?
探地雷达的基本原理与方法技术
探地雷达法(GPR),是利用一个天线发射高频宽带(1MHz~1GHz)电磁波,另一个天线接收来自地下介质界面的反射波而进行地下介质结构探测的一种电磁法。由于它是从地面向地下发射电磁波来实现探测的,故称探地雷达。有时亦将其称作地质雷达。它是近年来在环境、工程探测中发展最快,应用最广的一种地球物理方法。20世纪70年代以后,探地雷达的实际应用范围迅速扩大。
图4-10-1 反射雷达探测原理
探地雷达利用以宽带短脉冲(脉冲宽为数纳秒甚至更小)形式的高频电磁波(主频十几兆赫至千兆赫),通过天线(T)由地面送入地下,经底层或目标体反射后返回地面,然后用另一天线(R)进行接收(图4-10-1)。脉冲旅行时为
地球物理勘探概论
当地下介质中的波速v(m/ns)为已知时,可根据精确测得的走时t(单位为ns,1ns=10-9s),由上式求出反射物的深度(m)。
波的双程走时由反射脉冲相对于发射脉冲的延时进行测定。反射脉冲波形由重复间隔发射(重复率20kHz~100kHz)的电路,按采样定律等间隔地采集叠加后获得。考虑到高频波的随机干扰性质,由地下返回的反射波脉冲系列均经过多次叠加(叠加次数几十至数千)。这样,若地面的发射和接收天线沿探测线以等间隔移动时,即可在纵坐标为双程走时t(ns)、横坐标为距离x(m)的探地雷达屏幕上绘描出仅仅由反射体的深度所决定的“时距”波型道的轨迹图(图4-10-2)。与此同时,探地雷达仪即以数字形式记下每一道波型的数据,它们经过数字处理之后,即由仪器绘描成图或打印输出。
图4-10-2 探地雷达剖面记录示意图
探地雷达图像由于呈时距关系形式,类似于地震记录剖面。画面的直观性较强,波形图面上同一反射脉冲起跳点所构成的“同相轴”可用来勾画出反射界面。当然,对于有限几何体的界面,只要返回的能量足够,图面的各道记录上均可追踪反射脉冲同相轴,这自然就歪曲了目的体的实际几何形态。图4-10-3为点状反射体的理论计算图像。图上画了六种不同介质波速度条件下的同相轴曲线,可以看出[式(4-10-1)],点状体的异常呈双曲线的一叶形态,其峰顶的横向和纵向位置即为点状体的地面位置和深度。介质速度越小,异常峰尖就越明显;埋深越大、天线距越大,双曲线就越平坦。类似于地震剖面,为达到直观效果,必须对图像进行偏移归位校正。图4-10-4给出了有限几何体(充气排球)放入水中后在水面上的实测图像,它证实了计算的规律。由图可见,在有限体的边、角部位,常因绕射现象而使图像复杂化。
图4-10-3 点状体的雷达计算图像
v值:0.23,0.19,0.15,0.11,0.07,0.03m/ns
(a)天线距0m,埋深1m;(b)天线距1m,埋深1m;(c)天线距1m,埋深2m
图4-10-4 放入水中充气排球的探地雷达探测结果
球径21cm,顶深0.85m,波速0.033m/ns
探地雷达
11.6.1 基本原理
探地雷达(Geologic Radar或Earth Pobing Radar)主要研究电磁波在介质中传播的速度,介质对电磁波的吸收,以及电磁波在介质交界面的反射。
11.6.1.1 电磁波在介质中的传播速度
探地雷达测量的是地下界面的反射波走时 t,为了获取地下界面的深度 h=tv/2,必须有介质的电磁波传播速度v:
地质灾害勘查地球物理技术手册
式中:c为真空中电磁波传播速度,c=0.3m/ns;ε,为相对介电常数,是介质介电常数ε与真空的介电常数ε0的比值。
11.6.1.2 电磁波在介质中的吸收特性
吸收系数α决定了场强在传播过程中的衰减率,对非良导电、非磁性介质,α的近似值为
地质灾害勘查地球物理技术手册
即α与导电率σ成正比,与介质导磁率μ和介电常数ε比值的平方根成正比。
11.6.1.3 反射定律与反射系数
电磁波(又称入射波)到达介质的电性分界面时,会发生反射,被界面反射而返回的电磁波称为反射波。反射波与入射波界面处的运动学特征(即传播方向)遵循反射定律,即入射角θi(入射方向与界面法线向的夹角)等于反射角θr(反射方向与界面法线方向的夹角)。
电磁波在到达界面时,还将发生能量的再分配。入射波、反射波和折射波三者之间能量关系,因入射波电磁场相对界面的方向(极化特性)不同而异。当电场平行于界面时,电磁波从介质1入射到介质2时的电场反射系数 R12为
地质灾害勘查地球物理技术手册
对于非磁性、非良导电介质,
。垂直入射时11.6.2 观测方法
地质灾害勘查地球物理技术手册
探地雷达尽管型号很多,但都可以看成是由接收、发射两部分组成。发射部分通过天线向地下发射超高频宽带短脉冲电磁波,接收部分通过天线接收来自地下介质交界面的反射电磁波。目前常用的探地雷达观测方式有剖面法和宽角法两种。
11.6.2.1 剖面法
剖面法是发射天线(T)和接收天线(R)以固定间距沿测线同步移动的一种测量方式。当发射天线与接收天线间距为零,亦即发射天线与接收天线合二为一时,称为单天线形式,反之称为双天线形式。剖面法的测量结果可以用探地雷达时间剖面图像来表示。该图像的横坐标记录了天线在地表的位置;纵坐标为反射波双程走时,表示雷达脉冲从发射天线出发经地下界面反射回到接收天线所需的时间。这种记录能准确反映测线下方地下各发射界面的形态。图11-8为剖面法示意图及其雷达图像剖面。
图11-8 剖面法示意图及雷达图像
11.6.2.2 宽角法
为了原位测量地下介质的电磁波速度,在探地雷达工作中还常采用宽角法或共中点法观测方式。一个天线固定在地面某一点上不动,而另一天线沿测线移动,记录地下各个不同界面反射波的双程走时,这种测量方式称为宽角法。也可以用两个天线,在保持中心点位置不变的情况下,改变两个天线之间距离,记录反射波双程走时,这种测量方式称为共中心点法。当地下界面平直时,这两种方法结果一致。这两种测量方法的目的是求取地下介质的电磁波传播速度。图11-9是共中心点观测方式示意图及其雷达图像。
深度为h的地下水平界面的反射波双程走时t满足:
地质灾害勘查地球物理技术手册
式中:x为发射天线与接收天线之间的距离;h为反射界面的深度;v为电磁波的传播速度。当地层电磁波速度v不变时,t2与x2成线性关系。用宽角法或共中心点法测量得到地下界面反射波双程走时t,再利用公式(11.9)就可求得地层的电磁波速度。
11.6.3 技术要求
11.6.3.1 测线布置原则
探地雷达的野外工作常常是沿测线进行的,沿测线采集到的数据经处理后的成果就是探地雷达剖面(时间剖面或深度剖面),它是探地雷达资料解释的基本依据。测线布置的基本原则如下。
(1)主测线应垂直地下目标体走向,辅助测线平行目标体走向,目的是更好地反映目标体形态,同时也可以避免大量异常波的出现;
图11-9 共中心点观测方式与雷达图像
(2)测线应尽量通过已有的井位,以利于地层的对比。
11.6.3.2 分辨率
分辨率是地球物理方法分辨最小异常体的能力。分辨率可分为垂向分辨率与横向分辨率。类似于地震勘探,通常将探地雷达剖面中能够区分一个以上反射界面的能力称为垂向分辨率。
为了研究方便,选用处于均匀介质中一个厚度逐渐变薄的地层模型。电磁波垂直入射时,则有来自地层顶面、底面的反射波以及层间的多次波。多次波的能量较弱,所得到的雷达信号为顶面反射波与底面反射波的合成。依照相应地层厚度的时间关系所得地层顶面的反射波合成雷达信号见图11-10。由图可知,可取地层厚度 h=A/4作为垂直分辨率的下限。
探地雷达在水平方向上所能分辨的最小异常体的尺寸称为横向分辨率。雷达剖面的横向分辨率通常可用菲涅尔带加以说明。设地下有一水平反射面,以发射天线为圆心,以其界面的垂距为半径,作一圆弧与反射界面相切,此圆弧代表雷达到达此界面时的波前,再以多出1/4及1/2子波长度的半径画弧,在水平面界面的平面上得到两个圆。其内圆称为第一菲涅尔带,两圆之间的环形带称作第二菲涅尔带。根据波的干涉原理,法线反射波与第一菲涅尔带外缘的反射波的光程差λ/2(双程光路),反射波之间发生相长性干涉,振幅增强。第一带以外诸带彼此消长,对反射的贡献不大,可以不考虑。设反射界面的埋深为 h,发射、接收天线的距离远远小于h时,第一菲涅尔带半径可按下式计算:
图11-10 地层厚度对波形影响示意图(据Widess 1973修改)
(a)为反射射线图解,b为地层厚度;(b)为单个反射波形,利用地层厚度算出的时间延迟把得自顶底界面的单个反射波形相加,即得到如(c)中的波形;(c)为复合反射波形,它是地层厚度的函数,T为入射子波主周期,λ2=tv为地层内的波长。等时线间隔为t/2。标有x的线为波谷时间线,点线为零振幅时间线,为各复合子法的中心线;(d)为振幅与视厚度的定义
地质灾害勘查地球物理技术手册
式中:λ为雷达子波的波长;h为异常体的埋藏深度。
图11-11为处于同一埋深、间距不同的两个金属管道的探地雷达图像。该图像在水槽中获得,实验使用铁管φ5cm,钢管φ3cm。测量时使用中心频率为100MHz天线,其在水中的子波波长λ=0.33m。从图中可以看出一些内容:①处在深度为1.06m的φ3cm铁管仍可以很清晰地为探地雷达所分辨,由于其管径约为0.1rf,说明探地雷达对单个异常体的横向分辨率要远小于第一菲涅尔带的半径。②图11-10(a)两管间距0.5m大于第一菲涅尔带半径,由雷达图像可以准确把两管水平位置确定出来;(b)两管间距0.4m小于第一菲涅尔带半径rf=0.42m,已很难用雷达图像确定两管精确位置。这表明区分两个水平相邻的异常体,其最小横向距离要大于第一菲涅尔带半径。
11.6.3.3 探测距离与探距方程
探地雷达能探测最深目标体的距离称为探地雷达的深测距离。当雷达系统选定后,系统的增益 Q。就确定。Qs为最小可探测的信号功率 Wmin与输入到发射天线的功率Wt之比,即:
图11-11 两个同深金属管的地质雷达图像
(a)钢管(右)直径3cm,顶深1.06m;铁皮管(左)直径5cm,顶深1.04m,管中心距0.5m;(b)钢管(右)顶深0.52m;铁皮管(左)顶深0.5m,管中心距0.4m;(c)钢管(右)顶深1.04m;铁皮管(左)顶深1.06m,管中心距0.4m
地质灾害勘查地球物理技术手册
探地雷达从发射到接收的过程中能量会逐渐损耗。雷达系统从发射到接收过程中的功率损耗 Q可由雷达探距方程来描述。
地质灾害勘查地球物理技术手册
式中:ηt、ηr分别为发射天线与接收天线的效率;Gt、Gr分别为在入射方向与接收方向上天线的方向性增益;g为目的体向接收天线方向的后向散射增益;σ为目的体的散射截面;α为介质的吸收系数;r为天线到目的体的距离;λ为雷达子波在介质中的波长。
满足Qs+Q>0的最大距离r,称为探地雷达的深测距离,亦即处在距离 r范围内的目的体的反射信号可以为雷达系统所探测。
11.6.3.4 探地雷达方法有效性评价
每接受一个探地雷达测量任务,都需要对探地雷达解决地质问题的有效性进行评价,以确定探地雷达测量能否取得预期效果。
(1)目标体深度是一个非常重要的问题。如果目标体深度超出雷达系统探测距离,则探地雷达方法就要被排除。雷达系统探测距离可根据雷达探距方程(11.12式)进行计算。
(2)目标体几何形态(尺寸与取向)必须尽可能了解清楚,包括高度、长度与宽度。目标体的尺寸决定了雷达系统可能具有的分辨率,关系到天线中心频率的选用。如果目标体为非等轴状,则要搞清目标体走向、倾向与倾角,这些将关系到测网的布置。
(3)目标体的电性(介电常数与导电率)必须搞清。雷达方法成功与否取决于是否有足够的反射或散射能量为系统识别。当围岩与目标体相对介电常数分别为εh与εT时,目标体功率反射系数的估算式为:
地质灾害勘查地球物理技术手册
一般说目标体的功率反射系数应大于0.01。
(4)测区的工作环境必须搞清。当测区内存在大范围金属构件并成为无线电射频源时,将对测量构成严重干扰,在进行资料解释时必须加以排除。
11.6.4 信号处理
11.6.4.1 滤波技术
探地雷达测量中,为了保持更多的反射波特征,多采用宽频带进行记录,但在记录各种有效波的同时,也记录了各种干扰波。一维滤波技术就是利用频谱特征的不同来压制干扰波,以突出有效波,它包括一维频率域滤波和一维时间域滤波。
探地雷达数据中,有时有效波和干扰波的频谱成分十分接近甚至重合,这时无法用频率滤波压制干扰,需要用有效波和干扰波在空间位置上的差异进行滤波。这种滤波要同时对若干道进行计算才能得到输出,因此是一种二维滤波。
二维滤波原理是建立在二维傅里叶变换基础上的。沿地面观测频率波数谱 G(ω,kx)是频谱的时空函数。
地质灾害勘查地球物理技术手册
地质灾害勘查地球物理技术手册
上式说明,g(t,x)是由无数圆频率为ω=2πf,波数为kx的平面简谐波所组成,它们沿测线以视速度v*传播。
如果有效波和干扰波的平面简谐波成分有差异,有效波的平面谐波成分与干扰波的平面谐波成分以不同的视速度传播,则可用二维视速度滤波将它们分开,达到压制干扰、提高信噪比的目的。
11.6.4.2 二维偏移归位处理方法
探地雷达测量的是来自地下介质交界面的反射波。偏离测点的地下介质交界面的反射点只要其法平面通过测点,都可以被记录下来。在资料处理中需要把雷达记录中的每个反射点移到其本来位置,这种处理方法被称为偏移归位处理。经过偏移处理的雷达剖面可反映地下介质的真实位置。常用的偏移归位方法有绕射偏移、波动方程偏移和克希霍夫积分偏移,有关偏移方法可参考相关地球物理信号处理书籍。
11.6.5 数据处理方法
数据处理的目的是对原始雷达记录进行初步加工处理,使实测的雷达资料更便于计算机处理。常用的处理方法有不正常道处理与多次叠加处理。
当天线与地面接触不良,或者由于发射电路工作不正常产生废记录道,在预处理时必须废除该道记录,并用相邻道的均值补全。
在地下介质对电磁波吸收较强的测区,为了增加来自地下深处的信息,加大探地雷达的探测深度,常常使用多次叠加技术。目前适用于探地雷达多次叠加处理的测量方法有两种:一种是多天线雷达测量系统,应用一个发射天线,多个接收天线同时进行测量;另一种是多次覆盖测量,使用几种不同天线距的发射—接收天线沿测线进行重复测量。多次覆盖测量在同一测点上有几组共反射点的雷达数据,经天线距校正后,进行叠加使得来自地下的反射波得到加强,而干扰波信号大大减弱,从而增加了探测深度。
11.6.6 成果表达形式
(1)探地雷达实际材料图集中显示雷达测网布置;
(2)雷达剖面成果图显示雷达测线下地层与构造形态;
(3)平面等值线图表达测线范围内某些目的层分布特征,其中包括基岩高程图、目的层等深图等;
(4)雷达推测成果图,包括推断构造分布、滑体范围成果图,岩溶平面分布图等;
(5)三维雷达成果,包括垂直切片图、水平切片图、三维体显示以及格栅显示图。
11.6.7 资料解释原则
探地雷达资料的地质解释是探地雷达测量的目的,这项工作通常是在数据处理后所得到的探地雷达图像剖面中,根据反射波组的波形与强度特征,通过同相轴的追踪,确定反射波组的地质含义,构筑地质—地球物理解释剖面并依据剖面解释获得整个测区最终成果图,为地质灾害的治理方案提供依据。
探地雷达资料反映的是地下介质的电性分布,要把地下介质的电性分布转化为地质情况,必须要把地质、钻探、探地雷达这三方面的资料结合起来,建立测区的地质—地球物理模型,并以此得到地下地质模式。
11.6.7.1 雷达剖面与地质剖面的关系
雷达剖面不是地质剖面的简单反映,两者既有内在联系,又有区别。
(1)雷达反射界面与地层界面的关系
雷达反射界面是电性界面,而地质剖面反映的是岩层界面。地层划分的依据是岩性、生物化石种类及沉积时间等。地质剖面中由于沉积间断或岩性差异而形成的面,如断层面、侵蚀不整合面、流体分界面及不同岩性的分界面,均可成为反射面,这时反射面与地质分界面是一致的,即大多数雷达反射面大体上反映地层界面的形态。然而在许多情况下,反射面与钻井或测井所得到的地质剖面的地层分界面并不一致。主要体现在以下几种情况:
首先是有些埋藏深的古老地层,在长期的构造运动和压力的作用下,相邻地层可能有相近的波阻抗,因而地质上的层面不足以构成反射面。
其次,同一岩性的地层,其中既无层面又无岩性分界面,但由于岩层中所含流体成分不同,而构成物性界面,如饱水带与饱气带界面,因而雷达反射界面有时也并非是地质界面。
再次,雷达反射面是以同相轴表达的,当多个薄层组成多个地质界面时,在雷达剖面中由于雷达子波有一定的延续度使多个薄层界面的反射波叠加成复合波形,从而产生反射波界面与地层界面的不一致。
(2)雷达反射界面的几何形态与地质构造关系
雷达反射波剖面图像一般可以定性反映地质构造形态,尤其当构造形态比较简单时,反射波同相轴的几何形态所反映的地质构造是直观的、明显的。但由于分辨率限制及其噪声,雷达剖面反映构造细节有限,使两者之间存在不少差别。
首先,雷达剖面通常是时间剖面而地质剖面是深度剖面。雷达时间剖面要经过时深转换后才能成为深度剖面。时深转换后的雷达深度剖面与地质剖面的符合程度,主要取决于速度资料的可靠程度。速度不准,会导致雷达深度剖面上的反射层与地质剖面上的真实地层不符,甚至会引起构造畸变。
其次,由于雷达波的垂向分辨率的限制,致使在薄层情形下,雷达反射层与地质层位往往不是一一对应的,有可能一个地质界面对应多个雷达相位,多个薄的地层界面对应多个雷达相位。
再次,只要观测点处在界面的法线上,就会接收到旁侧界面的反射波,使雷达剖面上所反映的地质构造在空间上发生了偏移。尤其当地质构造比较复杂时,雷达剖面上反射波同相轴的几何图形并不能直接反映复杂构造的真实形态,甚至面目全非,给雷达资料带来很多假象,使得雷达剖面解释存在多解性。
11.6.7.2 雷达时间剖面对比
时间剖面的对比就是在雷达反射波时间剖面上,根据反射波的运动学和动力学的特征来识别和追踪同一反射界面反射波的过程。它实际上包括两方面的工作,一个工作是在某条剖面上根据相邻接收点反射波的某些特点来对比同一界面反射波,一般叫波的对比;另一个工作是在相邻多条雷达剖面上追踪同一界面的反射波,称为时间剖面的对比。在时间剖面上对比反射波,严格地说应该对比反射波的初至。但是,由于反射波是在各种干扰背景下记录下来的,当子波为最小相位时,其初至很难辨认。为了便于对比,总是利用剖面上比较明显的波形相位对比。一个反射界面在雷达剖面上往往包含有几个强度不等的同相轴,选其中振幅最强、连续性最好的某个同轴相进行追踪,这叫做强相位对比,有时反射层无明显的强相位,可对比反射波的全部或多个相位,这称为多相位对比。另外还可以利用波组和波系进行对比。波组是指由三四个数目不等的同相轴组合在一起形成的,或指比较靠近的若干界面所产生的反射波组合。由两个或两个以上波组所组成的反射波系列,称为波系。利用这些组合关系进行波的对比,可以更全面考察反射层之间的关系。因为从地质观点来说,相邻地层界面的厚度间隔、几何形态是有一定联系的,沿横向变化是渐变的,反映在时间剖面上反射波在时间间隔、波形特征等方面也是有一定规律的。有时在剖面的某段长度内,因某种原因(如岩性横向变化)有的同相轴质量较差(振幅弱、连续性差),我们可以根据反射波相互之间总的趋势的极值点(波峰或波谷)依次对比同相位。所以波的对比又称为波的相位对比或称同相轴对比。
11.6.8 仪器设备
探地雷达仪器设备见表11-6。
表11-6 探地雷达一览表
参考文献
傅良魁主编.1983.电法勘探教程,北京:地质出版社
李大心.1994.探地雷达方法及其应用,北京:地质出版社
李金铭,罗延钟主编.1996.电法勘探新进展,北京:地质出版社
刘煜洲等.1994.甚低频电磁法边界元数值模拟及地形影响与改正,物探与化探,Vol.18.No.6
刘天佑.2002.应用地球物理的数据采集与处理,武汉:中国地质大学出版社
史保连.1986.甚低频电磁法,北京:地质出版社
王兴泰等.1996.工程与环境物探新方法新技术,北京:地质出版社
Annan A.P.,Cosway,S.W.,1992.Ground Penetrating Radar Survey Design,Annual Meeting of SAGEEP,Chicago
Daniels,J.J.,Guntun,D.J..and Scott,H.F.,1988.Introduction to Subsurface Radar,IEE Proceeding,135(4),278~300
J.P..VanGestl,P.L.,Stoffa,2000.Migration using multiconfiguration GPR data,Proceedings of the 8th International Conference on GPR,Australia
什么是探地雷达
探地雷达(Ground
Penetring
Radar简称GPR)又称地质雷达地灾资质探地雷达,是用频率介于10^6-10^9Hz的无线电波来确定地下介质分布的一种方法。
探地雷达方法是通过发射天线向地下发射高频电磁波,通过接收天线接收反射回地面的电磁波,电磁波在地下介质中传播时遇到存在电性差异的界面时发生反射,根据接收到电磁波的波形、振幅强度和时间的变化特征推断地下介质的空间位置、结构、形态和埋藏深度。
在坝体渗漏探测中,渗透水流使渗漏部位或浸润线以下介质的相对介电常数增大,与未发生渗漏部位介质的相对介质常数有较大的差异,在雷达剖面图上产生反射频率较低反射振幅较大的特征影像,以此可推断发生渗漏的空间位置、范围和埋藏深度。
探地雷达的用途地灾资质探地雷达:US
RADAR探地雷达可用于检测各种材料,如岩石、泥土、砾石,以及人造材料如混凝土、砖、沥青等的组成。雷达可确定金属或非金属管道、下水道、缆线、缆线管道、孔洞、基础层、混凝土中的钢筋及其它地下埋件的位置。它还可检测不同岩层的深度和厚度,并常用于地面作业开工前对地面作一个广泛的调查。
探地雷达(GPR)
探地雷达是一种既古老而又年轻的物探技术,90年代以后才在我国得到较多的应用。
早在90多年以前,国外就曾利用该技术作过不可见目标的探测试验,但是直到70年代美国地球物理勘查设备公司(GSSI)才第一次研制成功SIR探地雷达系列,并取得一批实用成果。由于GPR技术具有其他物探方法无与伦比的浅层高分辨率的特点,20多年来该项技术已取得长足的进展。仪器不断更新换代,资料采集、处理、显示和解释方法不断革新,应用领域不断扩大。目前,GPR技术已成为地质调查的一种重要技术。
一、基本原理简介
GPR技术是一种高频(10~1000MHz)电磁技术。但是,它的工作方法却与地震相似。通过GPR天线向地质体内发射一短脉冲信号。信号在地质体内的传播主要取决于地质材料的电特性。当这种电特性发生变化时,GPR信号将发生反射、折射等现象。利用放置在相应位置上的接受器将信号接受下来,经放大、数字化处理和显示,为解释提供必要的数据和图像。除人们熟悉的反射工作方式外,GPR还有多种工作方式,如共中心点、广角反射、折射和透射等。各种方式都可以用于探测信号在地下的传播速度和能量衰减。影响GPR探测深度的因素主要有雷达系统的本身性能(如频率、能量等),被探测材料的物理特性。
二、仪器的发展
1.国外的主要进展
(1)70年代中期,GSSI公司的SIR探地雷达系列代表了首批可在商业上使用的仪器系统。日本的OYO公司推出了GeoRadar系列;微波公司推出了MK探地雷达系列。80年代中期,A-Cubed公司与加拿大地调所(GSC)合作,推出了高性能的Pulse EKKO数字雷达;瑞典地质公司及日本公司等还研制了可用于跨孔测量的孔中透视雷达系列。
(2)90年代以后,GPR仪器又有了一些新发展,相继推出了多态雷达系统、层析雷达系统。三维雷达技术具有明显提高解决浅层地质问题的能力,但却因耗时费力得不到普遍的应用。为此,Frank Lehman等研制出全自动的组合地质雷达激光经纬仪系统。利用该系统,一人可在2h内完成25m×25m范围的三维数据采集。三个方向上的定位精度为±2.5cm。数据处理、成图可在1h内完成,比传统方法的效率提高5~10倍。
(3)仪器轻便、结实、通用是仪器厂商和用户追求的目标之一。为实现该目标,1998和1999年加拿大的SSI公司先后推出了NogGin250、500型GPR仪器,将该公司生产的Pulse EKKO系统的全部雷达功能压缩在一个简单的NogGin轻便仪器箱内。但该仪器不仅是对原仪器进行简单的压缩,而是从基本设计原理上进行了改进。将NogGin与该公司研制的软件“SPIView”配合使用,用户则可以通过简单的操作在无限卷图上查看数据图像。
2.国内的进展
90年代我国引进了一批地质雷达仪器并将它们用于工程和灾害地质调查。近年来,国内地质雷达仪器的研制也取得了较大的进展。煤炭科学院西安分院物探所研制成功了适用于矿山防爆要求的DVL防爆型矿井雷达系列。原电子工业部第二十二研究所相继研究成功了LT-1,2,3型探地雷达。航天工业总公司爱迪尔国际探测技术公司推出了商品化的探地雷达系列产品。国内外生产的多种类型的GPR仪器,一般都具有较好的性能,可供不同探测目标选用。
三、资料采集、处理和显示技术的进展
(1)90年代初,GPR资料由单点采集过渡到连续采集,使GPR技术的应用向前迈进了一大步。
(2)地震资料处理的方式基本适用于GPR资料的处理。为了更好地将石油地震的先进技术引进到GPR领域,一些公司之间开展了合作。比如,1990年后SSI公司与地震图像软件公司(SISL)达成协议,SSI公司按地震资料输出格式设计Pulse EKKO探地雷达系统,将SISL公司开发的地震资料处理软件用于GPR资料的处理。这些软件包括各类滤波、反褶积及资料显示等。
(3)近几年来,国内外专家对各类模拟方法作了研究,如How-Wei Chen等利用时间域交叉网格有限差分数值法,在二维介质内研究、试验、补充了数值探地雷达波传播的模拟。出现了一些利用GPR信号能量衰减层析成像的方法,如应用频率漂移法的电磁波衰减层析成像法、利用形心频率下移的雷达衰减成像方法等。
(4)据SSI公司1998年底披露,该公司即将发行改进型的软件-EKKO三维2型软件。采用2型三维软件,用户可以在方便的条件下试验下述不同软件的组合处理,以便提高数据的立体特征。该三维软件包括去频率颤动、噪声滤波、背景清除、包络线和偏移。在资料显示方面,有的学者提出了将石油工业的四维技术用于时空域内采集的GPR资料,这样就有可能制成流体(如污染物羽状流)在地下传播的电影图像。
(5)透射法取得的资料必须经过处理才能显示成解释所需的资料。SSI公司于1997年开发出可用于将GPR透射资料变换成可用于解释图像的软件。实施步骤包括:原始资料编辑和归类、采集波至、利用美国矿业局的地震层析软件对资料进行层析成像处理,绘制速度、衰减及波散图件以及图像处理等。
(6)针对当前GPR技术的应用研究中,只侧重探测能力试验和数字模拟研究而对GPR资料解释研究不够的现状,雷林源提出了与GPR资料解释工作有关的基本理论和方法以及一些基本问题的求解。提出的基本问题包括电磁波在地层中传播的波阻抗;地层分界面上电磁波场强的反射与透射系数;地层中电磁波速度和反射波的相位以及GPR探测深度等。
四、应用及应用研究实例
GPR技术经过多年的发展,证明具有多方面的用途。国内刊物对一些普通的应用已给予了较多的介绍。这些应用包括:在水文地质方面可以用于浅部地下环境调查,土壤-基岩面探测,基岩节理、裂隙和层理的确定;在工程地质勘察方面可用于调查地下埋藏物,隧道、岩溶、建筑地基评价,道路、桥梁、水坝探测和质量无损检测;在灾害地质勘察方面可以用于滑坡、隐伏洞穴的探测以及考古方面的用途等。本文谨就GPR在地质环境污染、农业、军事等方面的应用实例作一简单的介绍。
1.调查地质环境污染
(1)一座建立在石灰岩地区的硝化纤维厂,由于污水的泄漏导致硝化纤维对地质环境的污染。为了探测地表至潜水面(约60m)岩溶结构可能捕获的硝化纤维,在18个30米深和7个50m深的钻孔中作了井中雷达探测。对收集到的资料作常规处理后,采用惠更斯-基尔霍夫(HK)叠加法绘制出三维雷达图。从深度为10m的重建图像上可以看出几个受硝化纤维污染的位置。在后来的开挖中,证示了GPR的探测成果。
(2)探测碳氢污染物试验。多年来的野外工作和试验已证明GPR具有调查地质环境污染的能力。国外专家在1m×0.4m×0.5m箱体中作了精心的试验,试图再一次验证GPR探测污染的能力,并用相关模型说明雷达响应与一些水文参数间的关系。通过试验和GPR数据的处理和解释得出结论:在污染物达到饱和时,利用GPR探不到潜水面;在相邻未受污染区可探到潜水面时,GPR可用于监测潜水面上的污染物;小型实验有助于探测或验证砂质土壤的水文地质参数,如毛细作用水头、污染物羽状流的传播速度;GPR能成功探测石油污染。
2.农业方面的应用
(1)沙漠中的沙丘和沙席是雨水良好的储集层,有可能成为灌溉的水源。利用GPR在沙特东部沙漠区作了探测。探测结果划出了圆顶形沙丘上部与其下部盐层间的界面、沙丘内的交错层理及潮湿带;探测还指出,圆顶沙丘可能是新月形沙丘的演变结果。在另一个沙漠场地的调查成果指出了沙丘内水流传播的两条可能途径。
(2)探测土壤含水量。自然土壤中的含水量是影响介电常数变化的主要因素。A.Chanzy等利用地面和空中两种方式的GPR试验,证明GPR测量数据与土壤含水量间具有很强的联系。可以用GPR技术探测土壤中的含水量。
(3)美国正在形成现代化的农业生产,GPR技术被用于探测特殊农业场地的土层、上层滞水、脆盘土、水文优先流径和压实土壤等与现代化农业有关的土壤信息。
3.探测古灰岩洞
前几年已有一些介绍利用GPR技术探测一般洞穴的文章,但未见到探测古灰岩洞及其塌陷特征的报道。为了配合开发美国得克萨斯州老灰岩洞的地下水,对该区的溶洞系统作了详细的研究。GPR资料显示了未扰动的主岩、过渡构造(如张性裂隙、古溶洞壁及洞顶等)和各种规格的角砾岩的分布。本探测成果证明,GPR技术是调查与近表灰岩系统及塌陷古溶洞有关特征的有效方法。
4.南极永冻场地安全检查
在一个南极考查计划利用的场地内,发现地下0.3~0.5m位置的冰内有一些融水坑(据2000年初中央电视台报道,我国南极科考队也发现了与此相似的冰水湖),它们将给场地的利用带来负面的影响。为此,利用GPR对场地进行了调查。通过对记录的绕射波结构及其他信息的分析,在3.5m左右深度发现一些有40m长、含分散水的冰层带,但含水量较少。另外,根据GPR资料显示,咸水层以上各层次的振幅没出现异常,说明场地下不可能存在其他融水坑。后来经重车和飞行器作了大量荷载试验,场地没出现任何与冰密度有关的事故。由此可见,GPR可作为南极冰盖场地安全检查的工具。
5.军事用途
瑞士科学家正在研制一种可用于排除地雷的GPR探测系统。该系统以探地雷达和用于成像的金属探测器为基础。探测器可以区别那些与GPR信号相似而金属含量不同的目标(如同样大小的地雷和石头);而GPR则可以将探测器给出的相似结果(如地雷和金属垃圾)区分开来。另外,据SSI公司1999年10月披露,利用GPR散射能量平面图可以发现塑料性地雷。
6.区域水文地质调查
雷达相图被定义为某一特定地层产生的雷达反射图像特征的总和,指的是雷达剖面资料上肉眼可见的反射波的不同组合形式。雷达资料观测中,地质体的构造和结构特征会影响雷达响应并产生特征效应。这些特征效应被称为雷达相图元素。自1990年以来,荷兰TNO应用地学研究所在荷兰30多个适合于GPR调查试验的点上作了测量,用于评价GPR对不同水文地质目标成像和描述目标特征的可能性。探查成果揭示出荷兰不同沉积环境下雷达相图元素的特征,将具有代表性的反射图像编成简要的“雷达相图集”,该相图集对确定地下水文地质层序的位置有益。据悉,美国也利用GPR对多个州做了类似的调查。